34935-vm/assets/cesium/packages/engine/Source/Shaders/SkyAtmosphereCommon.glsl
Flatlogic Bot 055d24df95 WORKING
2025-10-14 02:37:44 +00:00

82 lines
4.0 KiB
GLSL

float interpolateByDistance(vec4 nearFarScalar, float distance)
{
float startDistance = nearFarScalar.x;
float startValue = nearFarScalar.y;
float endDistance = nearFarScalar.z;
float endValue = nearFarScalar.w;
float t = clamp((distance - startDistance) / (endDistance - startDistance), 0.0, 1.0);
return mix(startValue, endValue, t);
}
void computeAtmosphereScattering(vec3 positionWC, vec3 lightDirection, out vec3 rayleighColor, out vec3 mieColor, out float opacity, out float underTranslucentGlobe)
{
float ellipsoidRadiiDifference = czm_ellipsoidRadii.x - czm_ellipsoidRadii.z;
// Adjustment to the atmosphere radius applied based on the camera height.
float distanceAdjustMin = czm_ellipsoidRadii.x / 4.0;
float distanceAdjustMax = czm_ellipsoidRadii.x;
float distanceAdjustModifier = ellipsoidRadiiDifference / 2.0;
float distanceAdjust = distanceAdjustModifier * clamp((czm_eyeHeight - distanceAdjustMin) / (distanceAdjustMax - distanceAdjustMin), 0.0, 1.0);
// Since atmosphere scattering assumes the atmosphere is a spherical shell, we compute an inner radius of the atmosphere best fit
// for the position on the ellipsoid.
float radiusAdjust = (ellipsoidRadiiDifference / 4.0) + distanceAdjust;
float atmosphereInnerRadius = (length(czm_viewerPositionWC) - czm_eyeHeight) - radiusAdjust;
// Setup the primary ray: from the camera position to the vertex position.
vec3 cameraToPositionWC = positionWC - czm_viewerPositionWC;
vec3 cameraToPositionWCDirection = normalize(cameraToPositionWC);
czm_ray primaryRay = czm_ray(czm_viewerPositionWC, cameraToPositionWCDirection);
underTranslucentGlobe = 0.0;
// Brighten the sky atmosphere under the Earth's atmosphere when translucency is enabled.
#if defined(GLOBE_TRANSLUCENT)
// Check for intersection with the inner radius of the atmopshere.
czm_raySegment primaryRayEarthIntersect = czm_raySphereIntersectionInterval(primaryRay, vec3(0.0), atmosphereInnerRadius + radiusAdjust);
if (primaryRayEarthIntersect.start > 0.0 && primaryRayEarthIntersect.stop > 0.0) {
// Compute position on globe.
vec3 direction = normalize(positionWC);
czm_ray ellipsoidRay = czm_ray(positionWC, -direction);
czm_raySegment ellipsoidIntersection = czm_rayEllipsoidIntersectionInterval(ellipsoidRay, vec3(0.0), czm_ellipsoidInverseRadii);
vec3 onEarth = positionWC - (direction * ellipsoidIntersection.start);
// Control the color using the camera angle.
float angle = dot(normalize(czm_viewerPositionWC), normalize(onEarth));
// Control the opacity using the distance from Earth.
opacity = interpolateByDistance(vec4(0.0, 1.0, czm_ellipsoidRadii.x, 0.0), length(czm_viewerPositionWC - onEarth));
vec3 horizonColor = vec3(0.1, 0.2, 0.3);
vec3 nearColor = vec3(0.0);
rayleighColor = mix(nearColor, horizonColor, exp(-angle) * opacity);
// Set the traslucent flag to avoid alpha adjustment in computeFinalColor funciton.
underTranslucentGlobe = 1.0;
return;
}
#endif
computeScattering(
primaryRay,
length(cameraToPositionWC),
lightDirection,
atmosphereInnerRadius,
rayleighColor,
mieColor,
opacity
);
// Alter the opacity based on how close the viewer is to the ground.
// (0.0 = At edge of atmosphere, 1.0 = On ground)
float cameraHeight = czm_eyeHeight + atmosphereInnerRadius;
float atmosphereOuterRadius = atmosphereInnerRadius + ATMOSPHERE_THICKNESS;
opacity = clamp((atmosphereOuterRadius - cameraHeight) / (atmosphereOuterRadius - atmosphereInnerRadius), 0.0, 1.0);
// Alter alpha based on time of day (0.0 = night , 1.0 = day)
float nightAlpha = (u_radiiAndDynamicAtmosphereColor.z != 0.0) ? clamp(dot(normalize(positionWC), lightDirection), 0.0, 1.0) : 1.0;
opacity *= pow(nightAlpha, 0.5);
}