Flatlogic Bot 055d24df95 WORKING
2025-10-14 02:37:44 +00:00

188 lines
9.2 KiB
GLSL

uniform vec3 u_radiiAndDynamicAtmosphereColor;
uniform float u_atmosphereLightIntensity;
uniform float u_atmosphereRayleighScaleHeight;
uniform float u_atmosphereMieScaleHeight;
uniform float u_atmosphereMieAnisotropy;
uniform vec3 u_atmosphereRayleighCoefficient;
uniform vec3 u_atmosphereMieCoefficient;
const float ATMOSPHERE_THICKNESS = 111e3; // The thickness of the atmosphere in meters.
const int PRIMARY_STEPS_MAX = 16; // Maximum number of times the ray from the camera to the world position (primary ray) is sampled.
const int LIGHT_STEPS_MAX = 4; // Maximum number of times the light is sampled from the light source's intersection with the atmosphere to a sample position on the primary ray.
/**
* This function computes the colors contributed by Rayliegh and Mie scattering on a given ray, as well as
* the transmittance value for the ray.
*
* @param {czm_ray} primaryRay The ray from the camera to the position.
* @param {float} primaryRayLength The length of the primary ray.
* @param {vec3} lightDirection The direction of the light to calculate the scattering from.
* @param {vec3} rayleighColor The variable the Rayleigh scattering will be written to.
* @param {vec3} mieColor The variable the Mie scattering will be written to.
* @param {float} opacity The variable the transmittance will be written to.
* @glslFunction
*/
void computeScattering(
czm_ray primaryRay,
float primaryRayLength,
vec3 lightDirection,
float atmosphereInnerRadius,
out vec3 rayleighColor,
out vec3 mieColor,
out float opacity
) {
// Initialize the default scattering amounts to 0.
rayleighColor = vec3(0.0);
mieColor = vec3(0.0);
opacity = 0.0;
float atmosphereOuterRadius = atmosphereInnerRadius + ATMOSPHERE_THICKNESS;
vec3 origin = vec3(0.0);
// Calculate intersection from the camera to the outer ring of the atmosphere.
czm_raySegment primaryRayAtmosphereIntersect = czm_raySphereIntersectionInterval(primaryRay, origin, atmosphereOuterRadius);
// Return empty colors if no intersection with the atmosphere geometry.
if (primaryRayAtmosphereIntersect == czm_emptyRaySegment) {
return;
}
// To deal with smaller values of PRIMARY_STEPS (e.g. 4)
// we implement a split strategy: sky or horizon.
// For performance reasons, instead of a if/else branch
// a soft choice is implemented through a weight 0.0 <= w_stop_gt_lprl <= 1.0
float x = 1e-7 * primaryRayAtmosphereIntersect.stop / length(primaryRayLength);
// Value close to 0.0: close to the horizon
// Value close to 1.0: above in the sky
float w_stop_gt_lprl = 0.5 * (1.0 + czm_approximateTanh(x));
// The ray should start from the first intersection with the outer atmopshere, or from the camera position, if it is inside the atmosphere.
float start_0 = primaryRayAtmosphereIntersect.start;
primaryRayAtmosphereIntersect.start = max(primaryRayAtmosphereIntersect.start, 0.0);
// The ray should end at the exit from the atmosphere or at the distance to the vertex, whichever is smaller.
primaryRayAtmosphereIntersect.stop = min(primaryRayAtmosphereIntersect.stop, length(primaryRayLength));
// For the number of ray steps, distinguish inside or outside atmosphere (outer space)
// (1) from outer space we have to use more ray steps to get a realistic rendering
// (2) within atmosphere we need fewer steps for faster rendering
float x_o_a = start_0 - ATMOSPHERE_THICKNESS; // ATMOSPHERE_THICKNESS used as an ad-hoc constant, no precise meaning here, only the order of magnitude matters
float w_inside_atmosphere = 1.0 - 0.5 * (1.0 + czm_approximateTanh(x_o_a));
int PRIMARY_STEPS = PRIMARY_STEPS_MAX - int(w_inside_atmosphere * 12.0); // Number of times the ray from the camera to the world position (primary ray) is sampled.
int LIGHT_STEPS = LIGHT_STEPS_MAX - int(w_inside_atmosphere * 2.0); // Number of times the light is sampled from the light source's intersection with the atmosphere to a sample position on the primary ray.
// Setup for sampling positions along the ray - starting from the intersection with the outer ring of the atmosphere.
float rayPositionLength = primaryRayAtmosphereIntersect.start;
// (1) Outside the atmosphere: constant rayStepLength
// (2) Inside atmosphere: variable rayStepLength to compensate the rough rendering of the smaller number of ray steps
float totalRayLength = primaryRayAtmosphereIntersect.stop - rayPositionLength;
float rayStepLengthIncrease = w_inside_atmosphere * ((1.0 - w_stop_gt_lprl) * totalRayLength / (float(PRIMARY_STEPS * (PRIMARY_STEPS + 1)) / 2.0));
float rayStepLength = max(1.0 - w_inside_atmosphere, w_stop_gt_lprl) * totalRayLength / max(7.0 * w_inside_atmosphere, float(PRIMARY_STEPS));
vec3 rayleighAccumulation = vec3(0.0);
vec3 mieAccumulation = vec3(0.0);
vec2 opticalDepth = vec2(0.0);
vec2 heightScale = vec2(u_atmosphereRayleighScaleHeight, u_atmosphereMieScaleHeight);
// Sample positions on the primary ray.
for (int i = 0; i < PRIMARY_STEPS_MAX; ++i) {
// The loop should be: for (int i = 0; i < PRIMARY_STEPS; ++i) {...} but WebGL1 cannot
// loop with non-constant condition, so it has to break early instead
if (i >= PRIMARY_STEPS) {
break;
}
// Calculate sample position along viewpoint ray.
vec3 samplePosition = primaryRay.origin + primaryRay.direction * (rayPositionLength + rayStepLength);
// Calculate height of sample position above ellipsoid.
float sampleHeight = length(samplePosition) - atmosphereInnerRadius;
// Calculate and accumulate density of particles at the sample position.
vec2 sampleDensity = exp(-sampleHeight / heightScale) * rayStepLength;
opticalDepth += sampleDensity;
// Generate ray from the sample position segment to the light source, up to the outer ring of the atmosphere.
czm_ray lightRay = czm_ray(samplePosition, lightDirection);
czm_raySegment lightRayAtmosphereIntersect = czm_raySphereIntersectionInterval(lightRay, origin, atmosphereOuterRadius);
float lightStepLength = lightRayAtmosphereIntersect.stop / float(LIGHT_STEPS);
float lightPositionLength = 0.0;
vec2 lightOpticalDepth = vec2(0.0);
// Sample positions along the light ray, to accumulate incidence of light on the latest sample segment.
for (int j = 0; j < LIGHT_STEPS_MAX; ++j) {
// The loop should be: for (int j = 0; i < LIGHT_STEPS; ++j) {...} but WebGL1 cannot
// loop with non-constant condition, so it has to break early instead
if (j >= LIGHT_STEPS) {
break;
}
// Calculate sample position along light ray.
vec3 lightPosition = samplePosition + lightDirection * (lightPositionLength + lightStepLength * 0.5);
// Calculate height of the light sample position above ellipsoid.
float lightHeight = length(lightPosition) - atmosphereInnerRadius;
// Calculate density of photons at the light sample position.
lightOpticalDepth += exp(-lightHeight / heightScale) * lightStepLength;
// Increment distance on light ray.
lightPositionLength += lightStepLength;
}
// Compute attenuation via the primary ray and the light ray.
vec3 attenuation = exp(-((u_atmosphereMieCoefficient * (opticalDepth.y + lightOpticalDepth.y)) + (u_atmosphereRayleighCoefficient * (opticalDepth.x + lightOpticalDepth.x))));
// Accumulate the scattering.
rayleighAccumulation += sampleDensity.x * attenuation;
mieAccumulation += sampleDensity.y * attenuation;
// Increment distance on primary ray.
rayPositionLength += (rayStepLength += rayStepLengthIncrease);
}
// Compute the scattering amount.
rayleighColor = u_atmosphereRayleighCoefficient * rayleighAccumulation;
mieColor = u_atmosphereMieCoefficient * mieAccumulation;
// Compute the transmittance i.e. how much light is passing through the atmosphere.
opacity = length(exp(-((u_atmosphereMieCoefficient * opticalDepth.y) + (u_atmosphereRayleighCoefficient * opticalDepth.x))));
}
vec4 computeAtmosphereColor(
vec3 positionWC,
vec3 lightDirection,
vec3 rayleighColor,
vec3 mieColor,
float opacity
) {
// Setup the primary ray: from the camera position to the vertex position.
vec3 cameraToPositionWC = positionWC - czm_viewerPositionWC;
vec3 cameraToPositionWCDirection = normalize(cameraToPositionWC);
float cosAngle = dot(cameraToPositionWCDirection, lightDirection);
float cosAngleSq = cosAngle * cosAngle;
float G = u_atmosphereMieAnisotropy;
float GSq = G * G;
// The Rayleigh phase function.
float rayleighPhase = 3.0 / (50.2654824574) * (1.0 + cosAngleSq);
// The Mie phase function.
float miePhase = 3.0 / (25.1327412287) * ((1.0 - GSq) * (cosAngleSq + 1.0)) / (pow(1.0 + GSq - 2.0 * cosAngle * G, 1.5) * (2.0 + GSq));
// The final color is generated by combining the effects of the Rayleigh and Mie scattering.
vec3 rayleigh = rayleighPhase * rayleighColor;
vec3 mie = miePhase * mieColor;
vec3 color = (rayleigh + mie) * u_atmosphereLightIntensity;
return vec4(color, opacity);
}