// See IntersectionUtils.glsl for the definitions of Ray, NO_HIT, INF_HIT, Intersections, // RayShapeIntersection, setSurfaceIntersection, setShapeIntersection // See IntersectLongitude.glsl for the definitions of intersectHalfPlane, // intersectFlippedWedge, intersectRegularWedge /* Ellipsoid defines (set in Scene/VoxelEllipsoidShape.js) #define ELLIPSOID_HAS_RENDER_BOUNDS_LONGITUDE #define ELLIPSOID_HAS_RENDER_BOUNDS_LONGITUDE_RANGE_EQUAL_ZERO #define ELLIPSOID_HAS_RENDER_BOUNDS_LONGITUDE_RANGE_UNDER_HALF #define ELLIPSOID_HAS_RENDER_BOUNDS_LONGITUDE_RANGE_OVER_HALF #define ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MAX_UNDER_HALF #define ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MAX_EQUAL_HALF #define ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MAX_OVER_HALF #define ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MIN_UNDER_HALF #define ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MIN_EQUAL_HALF #define ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MIN_OVER_HALF #define ELLIPSOID_INTERSECTION_INDEX_LONGITUDE #define ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MAX #define ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MIN #define ELLIPSOID_INTERSECTION_INDEX_HEIGHT_MAX #define ELLIPSOID_INTERSECTION_INDEX_HEIGHT_MIN */ #if defined(ELLIPSOID_HAS_RENDER_BOUNDS_LONGITUDE) uniform vec2 u_ellipsoidRenderLongitudeMinMax; #endif uniform float u_eccentricitySquared; uniform vec2 u_ellipsoidRenderLatitudeSinMinMax; uniform vec2 u_clipMinMaxHeight; RayShapeIntersection intersectZPlane(in Ray ray, in float z) { float t = -ray.pos.z / ray.dir.z; bool startsOutside = sign(ray.pos.z) == sign(z); bool entry = (t >= 0.0) != startsOutside; vec4 intersect = vec4(0.0, 0.0, z, t); vec4 farSide = vec4(normalize(ray.dir), INF_HIT); if (entry) { return RayShapeIntersection(intersect, farSide); } else { return RayShapeIntersection(-1.0 * farSide, intersect); } } RayShapeIntersection intersectHeight(in Ray ray, in float relativeHeight, in bool convex) { // Scale the ray by the ellipsoid axes to make it a unit sphere // Note: approximating ellipsoid + height as an ellipsoid vec3 radiiCorrection = u_ellipsoidRadiiUv / (u_ellipsoidRadiiUv + relativeHeight); vec3 position = ray.pos * radiiCorrection; vec3 direction = ray.dir * radiiCorrection; float a = dot(direction, direction); // ~ 1.0 (or maybe 4.0 if ray is scaled) float b = dot(direction, position); // roughly inside [-1.0, 1.0] when zoomed in float c = dot(position, position) - 1.0; // ~ 0.0 when zoomed in. float determinant = b * b - a * c; // ~ b * b when zoomed in if (determinant < 0.0) { vec4 miss = vec4(normalize(direction), NO_HIT); return RayShapeIntersection(miss, miss); } determinant = sqrt(determinant); // Compute larger root using standard formula float signB = b < 0.0 ? -1.0 : 1.0; // The other root may suffer from subtractive cancellation in the standard formula. // Compute it from the first root instead. float t1 = (-b - signB * determinant) / a; float t2 = c / (a * t1); float tmin = min(t1, t2); float tmax = max(t1, t2); float directionScale = convex ? 1.0 : -1.0; vec3 d1 = directionScale * normalize(position + tmin * direction); vec3 d2 = directionScale * normalize(position + tmax * direction); return RayShapeIntersection(vec4(d1, tmin), vec4(d2, tmax)); } /** * Given a circular cone around the z-axis, with apex at the origin, * find the parametric distance(s) along a ray where that ray intersects * the cone. * The cone opening angle is described by the squared cosine of * its half-angle (the angle between the Z-axis and the surface) */ vec2 intersectDoubleEndedCone(in Ray ray, in float cosSqrHalfAngle) { vec3 o = ray.pos; vec3 d = ray.dir; float sinSqrHalfAngle = 1.0 - cosSqrHalfAngle; float aSin = d.z * d.z * sinSqrHalfAngle; float aCos = -dot(d.xy, d.xy) * cosSqrHalfAngle; float a = aSin + aCos; float bSin = d.z * o.z * sinSqrHalfAngle; float bCos = -dot(o.xy, d.xy) * cosSqrHalfAngle; float b = bSin + bCos; float cSin = o.z * o.z * sinSqrHalfAngle; float cCos = -dot(o.xy, o.xy) * cosSqrHalfAngle; float c = cSin + cCos; // determinant = b * b - a * c. But bSin * bSin = aSin * cSin. // Avoid subtractive cancellation by expanding to eliminate these terms float determinant = 2.0 * bSin * bCos + bCos * bCos - aSin * cCos - aCos * cSin - aCos * cCos; if (determinant < 0.0) { return vec2(NO_HIT); } else if (a == 0.0) { // Ray is parallel to cone surface return (b == 0.0) ? vec2(NO_HIT) // Ray is on cone surface : vec2(-0.5 * c / b, NO_HIT); } determinant = sqrt(determinant); // Compute larger root using standard formula float signB = b < 0.0 ? -1.0 : 1.0; float t1 = (-b - signB * determinant) / a; // The other root may suffer from subtractive cancellation in the standard formula. // Compute it from the first root instead. float t2 = c / (a * t1); float tmin = min(t1, t2); float tmax = max(t1, t2); return vec2(tmin, tmax); } /** * Given a point on a conical surface, find the surface normal at that point. */ vec3 getConeNormal(in vec3 p, in bool convex) { // Start with radial component pointing toward z-axis vec2 radial = -abs(p.z) * normalize(p.xy); // Z component points toward opening of cone float zSign = (p.z < 0.0) ? -1.0 : 1.0; float z = length(p.xy) * zSign; // Flip normal if shape is convex float flip = (convex) ? -1.0 : 1.0; return normalize(vec3(radial, z) * flip); } /** * Compute the shift between the ellipsoid origin and the apex of a cone of latitude */ float getLatitudeConeShift(in float sinLatitude) { // Find prime vertical radius of curvature: // the distance along the ellipsoid normal to the intersection with the z-axis float x2 = u_eccentricitySquared * sinLatitude * sinLatitude; float primeVerticalRadius = inversesqrt(1.0 - x2); // Compute a shift from the origin to the intersection of the cone with the z-axis return primeVerticalRadius * u_eccentricitySquared * sinLatitude; } void intersectFlippedCone(in Ray ray, in float cosHalfAngle, out RayShapeIntersection intersections[2]) { // Undo the scaling from ellipsoid to sphere ray.pos = ray.pos * u_ellipsoidRadiiUv; ray.dir = ray.dir * u_ellipsoidRadiiUv; // Shift the ray to account for the latitude cone not being centered at the Earth center ray.pos.z += getLatitudeConeShift(cosHalfAngle); float cosSqrHalfAngle = cosHalfAngle * cosHalfAngle; vec2 intersect = intersectDoubleEndedCone(ray, cosSqrHalfAngle); vec4 miss = vec4(normalize(ray.dir), NO_HIT); vec4 farSide = vec4(normalize(ray.dir), INF_HIT); // Initialize output with no intersections intersections[0].entry = -1.0 * farSide; intersections[0].exit = farSide; intersections[1].entry = miss; intersections[1].exit = miss; if (intersect.x == NO_HIT) { return; } // Find the points of intersection float tmin = intersect.x; float tmax = intersect.y; vec3 p0 = ray.pos + tmin * ray.dir; vec3 p1 = ray.pos + tmax * ray.dir; vec4 intersect0 = vec4(getConeNormal(p0, true), tmin); vec4 intersect1 = vec4(getConeNormal(p1, true), tmax); bool p0InShadowCone = sign(p0.z) != sign(cosHalfAngle); bool p1InShadowCone = sign(p1.z) != sign(cosHalfAngle); if (p0InShadowCone && p1InShadowCone) { // no valid intersections } else if (p0InShadowCone) { intersections[0].exit = intersect1; } else if (p1InShadowCone) { intersections[0].entry = intersect0; } else { intersections[0].exit = intersect0; intersections[1].entry = intersect1; intersections[1].exit = farSide; } } RayShapeIntersection intersectRegularCone(in Ray ray, in float cosHalfAngle, in bool convex) { // Undo the scaling from ellipsoid to sphere ray.pos = ray.pos * u_ellipsoidRadiiUv; ray.dir = ray.dir * u_ellipsoidRadiiUv; // Shift the ray to account for the latitude cone not being centered at the Earth center ray.pos.z += getLatitudeConeShift(cosHalfAngle); float cosSqrHalfAngle = cosHalfAngle * cosHalfAngle; vec2 intersect = intersectDoubleEndedCone(ray, cosSqrHalfAngle); vec4 miss = vec4(normalize(ray.dir), NO_HIT); vec4 farSide = vec4(normalize(ray.dir), INF_HIT); if (intersect.x == NO_HIT) { return RayShapeIntersection(miss, miss); } // Find the points of intersection float tmin = intersect.x; float tmax = intersect.y; vec3 p0 = ray.pos + tmin * ray.dir; vec3 p1 = ray.pos + tmax * ray.dir; vec4 intersect0 = vec4(getConeNormal(p0, convex), tmin); vec4 intersect1 = vec4(getConeNormal(p1, convex), tmax); bool p0InShadowCone = sign(p0.z) != sign(cosHalfAngle); bool p1InShadowCone = sign(p1.z) != sign(cosHalfAngle); if (p0InShadowCone && p1InShadowCone) { return RayShapeIntersection(miss, miss); } else if (p0InShadowCone) { return RayShapeIntersection(intersect1, farSide); } else if (p1InShadowCone) { return RayShapeIntersection(-1.0 * farSide, intersect0); } else { return RayShapeIntersection(intersect0, intersect1); } } void intersectShape(in Ray ray, inout Intersections ix) { // Position is converted from [0,1] to [-1,+1] because shape intersections assume unit space is [-1,+1]. // Direction is scaled as well to be in sync with position. ray.pos = ray.pos * 2.0 - 1.0; ray.dir *= 2.0; // Outer ellipsoid RayShapeIntersection outerIntersect = intersectHeight(ray, u_clipMinMaxHeight.y, true); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_HEIGHT_MAX, outerIntersect); // Exit early if the outer ellipsoid was missed. if (outerIntersect.entry.w == NO_HIT) { return; } // Inner ellipsoid RayShapeIntersection innerIntersect = intersectHeight(ray, u_clipMinMaxHeight.x, false); if (innerIntersect.entry.w == NO_HIT) { setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_HEIGHT_MIN, innerIntersect); } else { // When the ellipsoid is large and thin it's possible for floating point math // to cause the ray to intersect the inner ellipsoid before the outer ellipsoid. // To prevent this from happening, clamp innerIntersect to outerIntersect and // sandwich the inner ellipsoid intersection inside the outer ellipsoid intersection. // Without this special case, // [outerMin, outerMax, innerMin, innerMax] will bubble sort to // [outerMin, innerMin, outerMax, innerMax] which will cause the back // side of the ellipsoid to be invisible because it will think the ray // is still inside the inner (negative) ellipsoid after exiting the // outer (positive) ellipsoid. // With this special case, // [outerMin, innerMin, innerMax, outerMax] will bubble sort to // [outerMin, innerMin, innerMax, outerMax] which will work correctly. // Note: If initializeIntersections() changes its sorting function // from bubble sort to something else, this code may need to change. innerIntersect.entry.w = max(innerIntersect.entry.w, outerIntersect.entry.w); innerIntersect.exit.w = min(innerIntersect.exit.w, outerIntersect.exit.w); setSurfaceIntersection(ix, 0, outerIntersect.entry, true, true); // positive, enter setSurfaceIntersection(ix, 1, innerIntersect.entry, false, true); // negative, enter setSurfaceIntersection(ix, 2, innerIntersect.exit, false, false); // negative, exit setSurfaceIntersection(ix, 3, outerIntersect.exit, true, false); // positive, exit } // Bottom cone #if defined(ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MIN_UNDER_HALF) RayShapeIntersection bottomConeIntersection = intersectRegularCone(ray, u_ellipsoidRenderLatitudeSinMinMax.x, false); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MIN, bottomConeIntersection); #elif defined(ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MIN_EQUAL_HALF) RayShapeIntersection bottomConeIntersection = intersectZPlane(ray, -1.0); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MIN, bottomConeIntersection); #elif defined(ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MIN_OVER_HALF) RayShapeIntersection bottomConeIntersections[2]; intersectFlippedCone(ray, u_ellipsoidRenderLatitudeSinMinMax.x, bottomConeIntersections); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MIN + 0, bottomConeIntersections[0]); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MIN + 1, bottomConeIntersections[1]); #endif // Top cone #if defined(ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MAX_UNDER_HALF) RayShapeIntersection topConeIntersections[2]; intersectFlippedCone(ray, u_ellipsoidRenderLatitudeSinMinMax.y, topConeIntersections); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MAX + 0, topConeIntersections[0]); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MAX + 1, topConeIntersections[1]); #elif defined(ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MAX_EQUAL_HALF) RayShapeIntersection topConeIntersection = intersectZPlane(ray, 1.0); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MAX, topConeIntersection); #elif defined(ELLIPSOID_HAS_RENDER_BOUNDS_LATITUDE_MAX_OVER_HALF) RayShapeIntersection topConeIntersection = intersectRegularCone(ray, u_ellipsoidRenderLatitudeSinMinMax.y, false); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LATITUDE_MAX, topConeIntersection); #endif // Wedge #if defined(ELLIPSOID_HAS_RENDER_BOUNDS_LONGITUDE_RANGE_EQUAL_ZERO) RayShapeIntersection wedgeIntersects[2]; intersectHalfPlane(ray, u_ellipsoidRenderLongitudeMinMax.x, wedgeIntersects); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LONGITUDE + 0, wedgeIntersects[0]); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LONGITUDE + 1, wedgeIntersects[1]); #elif defined(ELLIPSOID_HAS_RENDER_BOUNDS_LONGITUDE_RANGE_UNDER_HALF) RayShapeIntersection wedgeIntersect = intersectRegularWedge(ray, u_ellipsoidRenderLongitudeMinMax); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LONGITUDE, wedgeIntersect); #elif defined(ELLIPSOID_HAS_RENDER_BOUNDS_LONGITUDE_RANGE_OVER_HALF) RayShapeIntersection wedgeIntersects[2]; intersectFlippedWedge(ray, u_ellipsoidRenderLongitudeMinMax, wedgeIntersects); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LONGITUDE + 0, wedgeIntersects[0]); setShapeIntersection(ix, ELLIPSOID_INTERSECTION_INDEX_LONGITUDE + 1, wedgeIntersects[1]); #endif }